MATH5360 Game Theory Exercise 5

1. (a) For coalition $S_1 = A_1, A_2$, the game bimatrix for the 2-person game between S and S^c is $(1, 5)$

$$
(A_1, B_1) = \begin{pmatrix} (1,5) & (-1,7) \\ (6,0) & (7,-1) \\ (-1,7) & (0,6) \\ (8,-2) & (4,2) \end{pmatrix}.
$$

 A_1 can be reduced to

$$
A_1'\begin{pmatrix}6&7\\8&4\end{pmatrix},
$$

thus $\nu(S_1) = \frac{6 \times 4 - 8 \times 7}{6 + 4 - 8 - 7} = 32/5$ and $\nu(A_3) = \nu(S^c) = 6 - 32/5 = -2/5$. Similarly, We have $\nu(A_1, A_3) = 8$ and $\nu(A_2) = 6 - 8 = -2$, $\nu(A_2, A_3) = 15/2$ and $\nu(A_1) = 6 - 15/2 = -3/2$, and $\nu(A_1, A_2, A_3) = 6$.

(b) Let $\mathbf{x} = (x_1, x_2, x_3) \in I(\nu)$ be an imputation, then $\mathbf{x} \in C(\nu)$ if and only if

$$
\begin{cases}\n x_1 \ge -3/2, \ x_2 \ge -2, \ x_3 \ge -2/5, \\
 x_1 + x_2 \ge 32/5, \ x_1 + x_3 \ge 8, \ x_2 + x_3 \ge 15/2, \\
 x_1 + x_2 + x_3 = 6.\n\end{cases}
$$
\n(1)

 $-3/2 \leq x_1 = 6 - x_2 - x_3 \leq 6 - 15/2$ implies $x_1 = -3/2, -2 \leq x_2 = 6 - x_1 - x_3 \leq$ 6 − 8 implies $x_2 = -2$, $-2/5 \le x_3 = 6 - x_1 - x_1 \le 6 - 32/5$ implies $x_3 = -2/5$, but $x_1 + x_2 + x_3 = -39/10 \neq 6$. Thus, $C(\nu) = \emptyset$.

2. Let $\mathbf{x} = (x_1, x_2, x_3) \in I(\nu)$ be an imputation, then $\mathbf{x} \in C(\nu)$ if and only if

$$
\begin{cases}\n x_1 \ge 27, \ x_2 \ge 8, \ x_3 \ge 18, \\
 x_1 + x_2 \ge 36, \ x_1 + x_3 \ge 50, \ x_2 + x_3 \ge 27, \\
 x_1 + x_2 + x_3 = 60.\n\end{cases}
$$
\n(2)

which is equivalent to

$$
\begin{cases}\n33 \ge x_1 \ge 27, \\
10 \ge x_2 \ge 8, \\
42 \ge x_1 + x_2 = 60 - x_3 \ge 36.\n\end{cases}
$$
\n(3)

 $C(\nu)$ is the intersecting region of the three strip regions in Figure 1. 3. (a) $\mu(1) = \mu(2) = \mu(3) = 0$ and $\mu(1, 2, 3) = 1$.

$$
k = \frac{1}{\nu(1,2,3) - \nu(1) - \nu(2) - \nu(3)} = 1/7,
$$

and we have

$$
\mu(1,2) = k(\nu(1,2) - \nu(1) - \nu(2)) = 2/7,\n\mu(1,3) = k(\nu(1,3) - \nu(1) - \nu(3)) = 3/7,
$$

Figure 1:

Figure 2:

$$
\mu(2,3) = k(\nu(2,3) - \nu(2) - \nu(3)) = 5/7.
$$

(b) Let $\mathbf{x} = (x_1, x_2, x_3) \in I(\nu)$ be an imputation, then $\mathbf{x} \in C(\nu)$ if and only if

$$
\begin{cases}\n x_1 \ge 3, \ x_2 \ge 4, \ x_3 \ge 6, \\
 x_1 + x_2 \ge 9, \ x_1 + x_3 \ge 12, \ x_2 + x_3 \ge 15, \\
 x_1 + x_2 + x_3 = 20.\n\end{cases}
$$
\n(4)

which is equivalent to

$$
\begin{cases}\n5 \ge x_1 \ge 3, \\
8 \ge x_2 \ge 4, \\
14 \ge x_1 + x_2 = 20 - x_3 \ge 9.\n\end{cases}
$$
\n(5)

 $C(\nu)$ is the intersecting region of the three strip regions in Figure 2. (c) $\phi_1 = 9/2, \, \phi_2 = 13/2$ and $\phi_3 = 9$.

4. (a) $\nu(A) = \nu(B) = \nu(C) = 0$, $\nu(A, B) = 3$, $\nu(A, C) = 5$, $\nu(B, C) = 2$ and $\nu(A, B, C) = 6.$

(b) $\phi_1 = 8/3$, $\phi_2 = 7/6$ and $\phi_3 = 13/6$.

(c) According to the Shapley's value, A,B,C should pay 25/3, 35/6, 35/6 respectively.

5. We have $\nu(1) = \nu(2) = \nu(3) = \nu(4) = 0$, $\nu(1, 2) = \nu(1, 3) = \nu(1, 4) = 1$, $\nu(2, 3) =$ $\nu(2, 4) = \nu(3, 4) = 0$ and $\nu(S) = 1$ for any S with $|S| \ge 3$. Thus, $\phi_1 = 1/2$, $\phi_2 = \phi_3 =$ $\phi_4 = 1/6.$

9. (a) $\nu({A}) = \nu({B}) = \nu({C}) = 0, \nu({A, B}) = 72, \nu({A, C}) = 40, \nu({B, C}) = 40$ and $\nu({A, B, C}) = 176$.

(b)
$$
\mu({A}) = \mu({B}) = \mu({C}) = 0
$$
 and $\mu({A, B, C}) = 1$.

$$
k = \frac{1}{\nu({A, B, C}) - \nu({A}) - \nu({B}) - \nu({C})} = 1/176,
$$

and we have

$$
\mu({A, B}) = k(\nu({A, B}) - \nu({A}) - \nu({B})) = 9/22.
$$

(c) Let $\mathbf{x} = (x_1, x_2, x_3) \in I(\nu)$ be an imputation, then $\mathbf{x} \in C(\nu)$ if and only if

$$
\begin{cases}\n x_1 \ge 0, \ x_2 \ge 0, \ x_3 \ge 0, \\
 x_1 + x_2 \ge 72, \ x_1 + x_3 \ge 40, \ x_2 + x_3 \ge 40, \\
 x_1 + x_2 + x_3 = 176.\n\end{cases}
$$
\n(6)

which is equivalent to

$$
\begin{cases}\n136 \ge x_1 \ge 0, \\
136 \ge x_2 \ge 0, \\
176 \ge x_1 + x_2 = 176 - x_3 \ge 72.\n\end{cases}
$$
\n(7)

 $C(\nu)$ is the intersecting region of the three strip regions in Figure 3.

Figure 3: